skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yi-Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In our previous study, we identified a shift in the synchrotron peak frequency of the blazar B2 1308+326 from 1012.9to 1014.8Hz during a flare, suggesting it could be a changing-look blazar (CLB). In this work, we investigate the changing-look behaviour of B2 1308+326 by analysing a newly acquired optical spectrum and comparing it with an archival spectrum. We find that between the two epochs, the continuum flux increased by a factor of ~4.4, while the Mgiiemission line flux decreased by a factor of 1.4 ± 0.2. Additionally, the equivalent width of the Mgiiline reduced from ~20 to ~3 Å, indicating an apparent shift from a flat-spectrum radio quasar (FSRQ) class to a BL Lacertae (BL Lac) class. Despite this apparent change, the ratio of accretion disk luminosity to Eddington luminosity remains >10−2during both epochs, indicating efficient accretion persists in B2 1308+326. The measured black hole mass remains consistent with an average log M BH = 8.44 M. Our findings suggest that B2 1308+326 is not a genuine CLB but rather an intrinsic FSRQ that emerges as a BL Lac during high-flux states due to enhanced nonthermal emission. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  2. ABSTRACT We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $$\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possibly related to the long-term trend of the luminosity. There is also a possible additional ∼1.86 yr time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure. 
    more » « less